Estimating selection on synonymous codon usage from noisy experimental data.
نویسندگان
چکیده
A key goal in molecular evolution is to extract mechanistic insights from signatures of selection. A case study is codon usage, where despite many recent advances and hypotheses, two longstanding problems remain: the relative contribution of selection and mutation in determining codon frequencies and the relative contribution of translational speed and accuracy to selection. The relevant targets of selection--the rate of translation and of mistranslation of a codon per unit time in the cell--can only be related to mechanistic properties of the translational apparatus if the number of transcripts per cell is known, requiring use of gene expression measurements. Perhaps surprisingly, different gene-expression data sets yield markedly different estimates of selection. We show that this is largely due to measurement noise, notably due to differences between studies rather than instrument error or biological variability. We develop an analytical framework that explicitly models noise in expression in the context of the population-genetic model. Estimates of mutation and selection strength in budding yeast produced by this method are robust to the expression data set used and are substantially higher than estimates using a noise-blind approach. We introduce per-gene selection estimates that correlate well with previous scoring systems, such as the codon adaptation index, while now carrying an evolutionary interpretation. On average, selection for codon usage in budding yeast is weak, yet our estimates show that genes range from virtually unselected to average per-codon selection coefficients above the inverse population size. Our analytical framework may be generally useful for distinguishing biological signals from measurement noise in other applications that depend upon measurements of gene expression.
منابع مشابه
Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملIdentification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene
Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...
متن کاملEstimating Selection Intensity on Synonymous Codon Usage in a Non - equilibrium
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation-selection-drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent ch...
متن کاملEstimating selection intensity on synonymous codon usage in a nonequilibrium population.
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation-selection-drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent ch...
متن کاملSelection on Codon Usage in Drosophila americana
Synonymous codons are not used at random, significantly influencing the base composition of the genome. The selection-mutation-drift model proposes that this bias reflects natural selection in favor of a subset of preferred codons. Previous estimates in Drosophila of the intensity of selective forces involved seem too large to be reconciled with theoretical predictions of the level of codon bia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2013